压力数据在实验过程中不断波动,故图中给出的是时均值,由图中可以看出时均值基本保持稳定说明床内状态是稳定的。压力沿床高均匀递减,变化平缓表明床内高效固体物料基本均匀分布。没有明显的下浓上稀的情况,说明对于所用的床料颗粒而言,5m/s的床内气速偏高,使床内接近气力输送状态。但最高点处压力骤增,表示床料在此处浓集。这是因为该点位于床上部的端头结构内,并高过床的出口,使床料在该区域内聚集所致。1)脱硫效率随时间有一定的波动,这主要来自于床内速度和物料量的波动。2)蒸汽活化前脱硫效率处于较低水平,只有30%,而且由于进料Ca/S较小,床内处于较稀的状态,使钢铁脱硫剂脱硫剂易于变成乏吸收剂,而使脱硫效率呈下降趋势。但是经蒸汽活化处理后脱硫效率明显上升,且高达50%,说明蒸汽处理有明显的效果,必然是以某种方式提高了钢铁脱硫剂脱硫剂的固硫活性,其内在机理需要进一步研究。
钢铁脱硫剂氧化铁脱硫剂是广泛使用的干法脱硫剂,通过构建两种硫化的钢铁脱硫剂氧化铁脱硫剂表面在O2气氛下发生再生过程的气固模型,得到了硫化的钢铁脱硫剂氧化铁脱硫剂的再生机理。得出以下主要结论:关于H2S与氧化铁脱硫剂的脱硫过程,主要存在生成H2和生成H2O两条脱硫路径。研究表明:这两条脱硫路径是竞争性的。在脱硫过程中,钢铁脱硫剂氧化铁脱硫剂起到了两种作用:一方面,在H2S的解离过程中,钢铁脱硫剂氧化铁脱硫剂起催化剂作用并生成H2;另一方面,在生成H2O的路径中,两个氢原子夺去了钢铁脱硫剂氧化铁脱硫剂表面的O原子,同时S原子填补了被夺取的O原子所在的位置,氧化铁脱硫剂参与了反应,起到了反应物的作用。经过两条不同的脱硫路径会产生两种硫化表面,在生成H2的路径中,S原子吸附在表面的Fe顶位,我们称之为“硫吸附表面”,在生成H2O的路径中,表面的O原子的替代导致脱硫剂的降解,我们称之为“含硫表面”。无论脱硫过程生成的产物是H2还是H2O,H2S在表面的解离是脱硫过程中所经历的共同步骤。在脱硫过程中含硫表面的形成会导致H2S脱硫剂表面的解离活化能垒升高,对脱硫过程不利。在脱硫剂表面掺杂第二金属Co、Cu和Zn可以有效的降低H2S在氧化铁脱硫剂表面解离的活化能,有利于脱硫过程的进行。氧化铁表面的原子空缺会影响其脱硫性能。表面Fe空缺的存在可以有效的降低H2S解离的活化能,有利于脱硫过程的进行,而表面O空缺的存在导致表面金属活性位消失,对脱硫过程不利;O2气氛不仅可以再生硫化的脱硫剂,还可以修补脱硫剂表面的O空缺。氧化铁脱硫剂两种硫化表面都存在两条相互竞争的再生路径,且其决速步骤都是O2的解离。因此,降低O2解离。因此,降低O2解离的活化能有利于再生过程的进行。另外在O2的气氛下,表面O空缺的修补很容易。因而在O2气氛下再生,可有效的改善氧化铁脱硫剂的脱硫性能。
①为防止向沼气中投加的空气过量,应定期化验脱硫塔出口沼气中O2的浓度,氧含量应控制在1%以下。②不但要定期检测脱硫前沼气中H2S的含量,还要检测脱硫后H2S的含量,当脱硫效率低于90%时,说明脱硫剂已经接近饱和和硫容,钢铁脱硫剂脱硫剂已失效,应更换钢铁脱硫剂脱硫剂,可从脱硫塔底部放掉部分失效的脱硫剂,在从顶部补充新的脱硫剂。③为保证脱硫效果,脱硫塔内氧化铁的装填量应保证反应层高度与脱硫塔直径之比大于3~4。注:定期检测脱硫罐内的O2含量以及脱硫前后H2S含量,可配置一台便携沼气分析仪Gasboard-3200Plus,实时获取现场工艺参数,以控制空气进入量,确定脱硫剂换新时间,保证钢铁脱硫剂脱硫剂再生效果与脱硫效率。
目前高效烟气钢铁脱硫剂脱硫剂主要有三种方式:一是燃烧固硫法,是在煤中加入一定量的固硫齐U,使煤在燃烧时生成的高效二氧化硫与固硫剂反应,生成硫酸盐与炉渣一起排出,这种方法成本较高。另一种方法是湿法脱硫,主要采用喷淋法,用碱性水溶液吸收烟气中的二氧化硫,这种方法用水量大,脱硫后产物难处理,易产生二次污染,投资成本高,占地面积大,设备防腐要求高。还有一种方法是活性炭吸附法,该方法活性炭的使用周期较短,再生较为复杂,脱硫效率低,水洗耗水量大,易造成二次污染,活性炭价格较高,增加了成本。